

7

Representing Variants
Including Quality Attributes

Clotilde Rohleder

Abstract. Developers must seriously address Non-
Functional Requirements (Quality of Service) in the
production of software families that include variants
for different customers. Most prior research in this
area deals with design and implementation aspects
such as mechanisms that help implement the
variability in software architecture. Few researchers
have addressed how to represent variability in Non-
Functional Requirements. This paper proposes a goal
driven approach that captures the variability at both
Functional and Non-Functional Requirements level.
We use a goal driven formalism to represent the
feature variability including the quality attributes
through relationships. Our approach provides a global
view of variants having different quality attributes and
facilitates matching between the requirements and the
product. It exposes the user to the choices that are
relevant to the satisfaction of user goals.
To identify the impact of Non-Functional
Requirements on variants, we represent the Non-
Functional Requirements by goals according to
several decomposition methods. We capture the
variability through requirements analysis and
represent the variants through a goal-driven modeling
formalism called “map.” Each variant has its own
quality attributes.
Keywords: Software variability, Quality of Service,
Non-Functional Requirements.

1 Introduction

Developing any system, even one for a single
customer, requires addressing the customer’s
Functional and Non-Functional Requirements
(Quality of Service). Unfortunately, as mentioned in
[4] and [5], most prior researchers have
neglected the representation of the variability of
requirements and have not addressed the impact
of Non-Functional Requirements on variants [2],
[3], [9], [10], [15].
We propose treating the variability from a
Functional and Non-Functional Requirements
perspective. To identify the impact of Non-
Functional Requirements on variants, we
propose to represent the Non-Functional
Requirements by goals [6], [7], [8],[14] according
to the decomposition methods of [1], [6], [7], [8]
and [14], and to capture the variability through
requirements analysis and to represent the
variants through a goal-driven modeling
formalism called “map” [12], [13], [4] and [5].

Centre de Recherche en Informatique, 90 rue de Tolbiac,

F-75013 Paris, France
SIEMENS PL (DE) GmbH, Lina-Ammon-Strasse 22

D-90471 Nuremberg, Germany
fraipont@univ-paris1.fr, clotilde.rohleder@siemens.com

Each identified variant will have its own quality
attributes.
The remainder of this paper is structured as
follows. Section 2 introduces the Quality Variation
Model, including the variant formalism using map,
and the Non-Functional representation using
NFR decomposition. This section shows with an
example how to represent variability including
Non-Functional Requirements. Finally, we
summarize our work and conclude with plans for
future work

2 Quality Variation Model QVaM

2.1 Overview of our model
In moving to the target systems, we consider

design techniques of map to achieve Functional
Requirements represented as goals and
strategies. Functional Requirements are
represented as variants. A variant is a
representation at requirements level of a
cohesive bundle of system functionalities
according the user’s point of view. In the variant
representation, we include the Non-Functional
Requirements and translate the impact of Non-
Functional Requirements on Variants as quality
attributes. During variants selection one can
apply the impact rules of the represented Non-
Functional Requirements on variants. This
variants selection shows consequences at design
level by the selection, implementation or
configuration of system functionalities

2.2 Variants
Variants are based on the map model [12], [13],
[4], [5]. Map is a process model expressed in a
goal driven perspective. It provides a system
representation based on a non-deterministic
ordering of goals and strategies. Map features
have four kinds of relationships, namely multi-
thread, bundle, path and multi-path. These
relationships show the possible combination of
features from which the user can select the
appropriate ones according to user needs. We
map these combinations of features to variants. A
variant is a representation at requirements level
of a cohesive bundle of system functionalities
according the user’s point of view. We define
different variant types corresponding to the
different relationship types inside the map:
atomic, simple and composite variant.
Textual notation of variants
We describe variants with codes (Table 1).
Additionally we need the variant name, the

8

Source goal, the Target goal, the Manner and
Application Rules [4], [5]. For all variant types,
the name of the multi-path composite variant is
the target goal. The source and target goals are
source goal (which has the code a) and a target
goal (which has the code b). The manner is
expressed by a strategic path. Table 1 shows all
variant codes and strategic path (Q is the
intermediate goals bundle).

Variant types Variant Code Strategic path
Atomic Variant abk abk
Simple Variant with
Alternate Choice

SVaab (ab1,ab2, .., abn)

Simple Variant with
Multiple Choice

SVmab (ab1 , ab2 , ... ,
abn)

Path Composite
Variant

CVpa,Q,b .(Vi,…, Vn)

Multi-Path
Composite Variant

CVma,Qi, …,Qn,b  (Vi,…Vn)

Table 1. Textual representation of variants

2.3 Integration of Non-Functional
Requirements
NFRs are rarely “satisfied” in a particular clear-
cut sense [6], [7]. Instead they affect decisions to
contribute to, or hinder that a particular goal.
Therefore, we used goals satisficing to suggest
that generated software is expected to satisfice
NFRs within acceptable limits, rather than
absolutely. To concretely analyze and
understand the impact of each NFR on variants,
we have to decompose the NFRs into quality
softgoals [1], [6], [7], [8] and [14]. Figure 1 shows
the graphical and textual representation of Non-
Functional Requirements. Graphically the NFR is
represented by a circle. The NFR circle is named
by the identified NFR and its decomposed NFR
goal within brackets. For the textual
representation of the NFRs goals, we need a
code, a name, a subject goal, satisficing data,
and a coefficient.

Figure 1. Representation Non-Functional
Requirements

2.4 Representation of NFR Impact on different
types of variant
After having captured, defined and represented
the variants and the NFRs, we research the
impact of NFRs on variants. To consider the
impact of Non-functional Requirements on
variants, we use a catalogue of interrelationships
that describe contributions of Non-Functional
Requirements toward meeting goals/variants. We
use satisficing links whose five values are
recorded in Table 2.

NFR
Impact

on
Variants

Very
positive
impact

Positiv
e

impact

Neutral
impact

Negati
ve

impact

Very
negative
impact

Symbol ++ + ? - --

Table 2. Different NFR impact values on
variants.

2.4.1 Atomic variants are not decomposable
into other variants. They are linked directly to
system functionalities. An atomic variant
describes how to reach directly the target
situation (concretized by the target goal
satisfaction) from a initial situation (that has been
reached after the source goal has been realized).
The atomic variants are linked with each other to
build variants with bigger granularity (simple or
composite).

Figure 2 Example of map section and
representation of its corresponding Atomic

Variant.

These links associate the NFRs with variants and
they describe which NFR gives which impact on
which variant. The information concerning the
NFR impact on each variant will be considered as
a quality attribute for this variant. We will first deal
with the graphical representation and then the
textual representation of NFR impact on variants.
The representation of NFRs’impact on variants
requires satisficing links. We start the satisficing
link from the NFR decomposed goal to the
variant represented by a circle. The end of the
link does not touch the variant circle to avoid
confusion with the decomposition process
explained by [6], [7], [8] and [14]. The link is
completed by the satisficing NFR impact results.
Figure 3 is an example of representing some
Atomic Variants with quality attributes.

Figure 3. NFR Impact on Atomic Variants

2.4.2 Simple variants represent requirement
variability by grouping the atomic variants that
are linked either by an alternate choice link
(Simple Variant with Alternate Choice) or by a
multiple choice link (Simple Variant with Multiple
Choice). In the first case, the atomic variants are
mutually exclusive. This link expresses an
exclusive choice between all atomic variants.
Only one variant can be selected among several.
Each atomic variant represents a manner or a

9

distinct strategy in order to reach the variant
target goal from its source goal. In the second
case at least one atomic variant must be
selected. The atomic variants are
complementary. The satisfaction of target goal is
done through the selection of one or more among
those variants.

Figure 4. Map sections linked by a bundle or
multi-thread relationship and Simple Variant

with Alternate or Multiple Choice.

In order to implement the NFR Impact of Simple
and/or Composite Variants without losing the
understandability of the graphical representation,
we have developed a NFR impact hierarchy. The
main architecture principles are defined as
follows. The NFR impact architecture implements
the different variation types in assigning a NFR
impact layer to each variant of our model. In
choosing to perform the NFR impact for each
atomic variant separately, we can then get the
NFR impact of a bundle of atomic variants that
are linked by an alternative or a multiple choice,
on a higher layer. Figure 5 is an example of
graphical representation of Simple Variants
including quality attributes.

Figure 5. Simple Variants including quality
attributes

2.4.3 Composite Variant
The Path Composite Variant consists of a simple
composition link which links atomic variants,
simple variants and/or composite variant, under a
plan form which defines the order in which the
variants must be realized. In a general way, a
path composite variant is grouping all possible

variants combinations between a source and a
target goal through the satisfaction of an
intermediate goals bundle. Each combination
goes through the same intermediate goals
bundle. The variations are in the manners that
lead to satisfy each goal of the intermediate goals
bundle. A Multi-Path Composite Variant
expresses a variation in the selection of the
intermediate goals which lead to satisfy the target
goal from a source goal. Each possible
combination of intermediate goal builds a distinct
way. The satisfaction of the target goal implies
the selection of distinct intermediate goals.
Structurally, a Multi-Path Composite Variant
(Figure 6) consists of a multiple composition link
between variants. The Multi-Path Composite
Variant must consist of at least one Composite or
Simple Variant. Each sub variant is a possible
variant combination which constitutes a possible
way between source and target goal.

Figure 6. Map sections linked by a multi-path
relationship and Multi-Path Composite Variant

In applying the same approach with variants
which are linked with each other by a simple
composition link, we get the NFR Impact of Path
and Multi-Path Composite Variant in setting the
NFR impact of each path. The NFR impact of the
root variant is computed by the NFR impact of
the sub variants. The NFR impact of the sub
variant can be self computed by another NFR
impact if the variant is self composed by sub-
paths. So, the representation of the NFR impact
of a composite variant consists of a hierarchy of
NFR impacts which are linked by composition.
Figure 7 represents the NFR impact of a
Composite Variants.

10

Figure 7. Composite Variants including
quality attributes

The textual representation of NFR Impact on
Variants completes the textual representation of
variants [4], [5] using the NFR dimension that is
considered as a quality attribute for this variant.
The notation of the quality attribute inside the
textual representation of variant Vi is QoS(Vi),
which means Quality of Service of variant Vi. The
quality attributes of the variant Vi is written as
follows:
QoS(<Vi>)=
<Vi>.NFR1[goalNFR1].<ImpactValue>…<Vi>.NFRn

.[goalNFRn].<ImpactValue>

3. Example of representing the
variants with quality attributes

Figure 8 is the representation of the Path
Composite Variant CVpa{b}c. This variant
represents the cancellation of a paid reservation.
The letter a is the code of the goal To make a
reservation, b is the code of goal To pay for a
reservation and c is the code of goal To cancel a
reservation. SVaab and bc1 are the
corresponding codes of the Simple Variant with
Alternate Choice and the Atomic Variant. The
NFR Impact of CVpa{b}c will consider the quality
attribute of SVaab and bc1.. The NFR impact on
atomic variants ab1, ab2 and ab3, which build the
quality attribute of Simple Variant with Alternate
Choice SVaab are represented through circles
linked by the symbol of alternate choice link «».
The NFR impact of atomic variant bc1 is attached
to the other NFR impact by the sequence link
symbol «.».

For example, the quality attribute of Atomic Variant
ab1 is QoS(abl) = ab1.Performance[PerfGoal].++,
ab1.Security[SecurGoal].++. The quality attribute of
Simple Variant with Alternate Choice SVaab is
QoS(SVaab))  [QoS(abl), QoS(ab2), QoS(ab3)].
The quality attribute of Path Composite Variant
CVpa{b}c is QoS(CVpa{b}c) = .[(QoS(SVaab)),
(bc1.Informativeness[InformGoal].+)].

Figure 8. Graphical representation of NFR impact on Path Composite Variant CVpa{b}c

4 Conclusion

This paper proposes a new way to express
quality feature variability. We use a goal driven
formalism to represent the feature variability
including the quality attributes through
relationships. Through our approach, the
customer gets a global view of variants having
different quality attributes without being lost in
technical details. A representation of the variants

at the Functional and Non-Functional
Requirements level facilitates the matching
between his requirements and the product.
However, our proposal is a work in progress. In
further work we will consider the task of building
the correct derived product for different
companies.

11

References

[1] Castro, J., Kolp, M., Mylopoulos, J.
"Towards Requirements-Driven Software
Development Methodology: The Tropos
Project," Information Systems, June
2002

[2] Bachmann F., Bass L. “Managing
variability in software architecture”. ACM
Press, NY, USA, 2001

[3] Bosch J., Florijn G., Greefhorst D.,
Kuusela J., Obbink H., Pohl K.
“Variability issues in Software Product
Lines.” 4th International Workshop on
Product Family Engineering (PEE-4),
Bilbao, Spain, 2001

[4] Bennasri S., Souveyet C. "Capturing
requirements variability into
components", 6th International
Conference on Enterprise Information
Systems (ICEIS'04), Porto, Portugal,
2004

[5] Bennasri S. “Une approche intentionnelle
de representation et de réalisation de la
variabilité dans un système logiciel”, PhD
dissertation, Université Paris 1, 2005

[6] Chung, L., Nixon, B.A., Yu, E. and
Mylopoulos, J. “Non-Functional
Requirements in Software Engineering”,
Kluwer Academic Publishers, Boston,
2000

[7] Chung L., Nixon B. A., Yu E., Dealing
with Change : An approach Using Non-
functional Requirements, Proceedings of
the Second Internation Symposium on
Requirements Engineering, York,
England, Springer Verlag London
Limited, Requirements Engineering
Journal, 1996, p. 238-260

[8] Chung, L., and Subramanian, N.
"Process-Oriented Metrics for Software
Architecture Adaptability", Proceedings
of ISRE, 2001

[9] González-Baixauli B., Sampaio do Prado
Leite J.C., Mylopoulos, J. “Visual
Variability Analysis for Goal Models”.
Requirements Engineering Conference
2004: 198-207

[10] Halmans, Pohl K. “Communicating the
variability of a software product family to
customers”, Software and System
Modeling, Springer-Verlag 2003

[11] Keller, R.K., Schauer, R. "Design
Components: Towards Software
Composition at the Design Level",
Proceedings of International Conference
on Software Engineering, April 19-25,
1998, Kyoto, Japan, pp. 302-311

[12] Rolland, Prakash N. “On the Adequate
Modeling of Business Process Families”,
BPMDS’07 in conjunction with CAiSE’07,
Norway, 2007

[13] Rolland C. “Bridging the gap between
Organizational needs and ERP
functionality”. RE Journal, 2000

[14] Subramanian N., Chung L. “Relationship
between the Whole of Software
Architecture and its Parts: An NFR
Perspective”. SNPD 2005: 164-169

[15] Svahnberg, M., Van Gurp J., Bosch J.
“On the notion of variability in Software
Product Lines”. Proceedings of the
Working IEEE/IFIP Conference on
Software architecture, 2001

